
 International Journal of Science, Technology and Management (IJSTM)                       ISSN (online): 2321-774X 
Volume 11, Issue 1, 2024  
 

 
1 

 
Efficient Skin Cancer Image Enhancement Using  

Log Ratio Difference 
 

1Suryanshu, 2Mr. Amit Ranjan 
 1Research Scholar, 2Assistant Professor  

Department of Computer Science & Engineering  
BRCM College of Engineering & Technology  

Bahal, Bhiwani, Haryana (India)  
 
Abstract-Skin cancer images are utilized for 

prediction of cancerous images. The accurate and 

early detection of skin cancer is crucial for 

effective treatment and improved patient 

outcomes. For improving quality, the efficient 

image enhancement is extremely required. In this 

paper, an enhancement framework is proposed 

for skin cancer image enhancement using 

MedNode dataset. The proposed approach 

comprises a multi-stage preprocessing techniques, 

which includes median filtering, Contrast Limited 

Adaptive Histogram Equalization (CLAHE), 

Intensity Adjustment and Log Ratio difference 

methods. The evaluation of proposed methodology 

is performed using entropy, Peak Signal to Noise 

Ratio (PSNR), Feature Similarity Index Metrics 

(FSIM), Spectral similarity Index Metrics 

(SRSIM), Mean Absolute Error (MAE), and 

Universal Quality Index (UQI). The proposed 

methodology outperforms state of the art 

methods. 
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1. Introduction 

Skin cancer is one of the most prevalent forms of cancer 

worldwide, with over 5 million cases diagnosed each 

year in the United States alone [1]. Early and accurate 

detection is crucial for effective treatment and improved 

patient outcomes. However, the visual inspection and 

diagnosis of skin lesions can be challenging, even for 

experienced dermatologists, due to the subtle variations 

in the appearance of malignant and benign lesions. 

Recent advances in computer vision and machine 

learning techniques have opened up new avenues for 

automated skin cancer analysis and classification. One 

critical component of these systems is the preprocessing 

and enhancement of skin lesion images. Effective image 

enhancement algorithms can improve the visibility of 

diagnostic features, remove artifacts and noise, and 

normalize the image properties, ultimately leading to 

improved classification accuracy. 

Image enhancement techniques for skin lesion analysis 

have been an active area of research in recent years. 

Various methods have been proposed, including 

contrast enhancement [2], [3], [4]. However, many of 

these techniques are tailored to specific imaging 

modalities or cancer types and may not generalize well 

to diverse clinical scenarios. 

This paper proposes a hybrid image enhancement 

framework for skin cancer image analysis that combines 

RGB color model conversion to LAB color model, 

intensity adjustments and log ratio difference 

techniques. The proposed approach aims to address the 

limitations of existing methods by improving PSNR, 

FSIM, SRSIM, MAE and UQI. Extensive experiments 
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on MedNode dataset demonstrate the effectiveness of 

our method in enhancing skin cancer images. 
 

2. Literature Review 

Enhancement is a crucial preprocessing step in analysis 

of skin cancer from images. Proper enhancement can 

improve the visibility of subtle features and details in 

skin cancer images, which can be further used for 

essential diagnosis and classification. However, 

traditional contrast enhancement methods, such as 

histogram equalization and adaptive histogram 

equalization, often introduce artifacts, noise, and over-

enhancement issues, especially in regions with high 

contrast or sharp edges. This literature review provides 

an overview of recent developments in machine 

learning-based enhancement techniques for skin cancer 

imaging.  

Histogram equalization (HE) is one of the most widely 

used enhancement techniques [5]. It redistributes the 

pixel intensities to achieve a more uniform histogram, 

thereby increasing the contrast of the image. However, 

HE can introduce undesirable artifacts, such as over-

enhancement in relatively homogeneous regions and 

loss of detail in highly contrasted areas. Adaptive 

histogram equalization (AHE) is an extension of HE 

that operates on small image regions (tiles) rather than 

the entire image [6]. While AHE can enhance local 

contrast effectively, it often introduces artificial 

boundaries between tiles, leading to a "tiled" 

appearance and potential loss of diagnostic information. 

Other traditional methods, such as gamma correction 

and contrast limited adaptive histogram equalization 

(CLAHE), have also been explored for skin lesion 

image enhancement [7], [8], [9]. However, these 

methods often require careful parameter tuning and may 

still struggle with complex contrast variations or noise 

present in the images. 

Mete and Sirakov (2014) used optimal feature selection 

to diagnose skin cancer with accuracy. The author used 

a Support Vector Machine with recursive feature 

removal, which produced results with higher accuracy 

than previous methods used [10]. According to Giotis et 

al. (2015), computer vision methods have been at the 

forefront of automated dermoscopic image processing 

for the purpose of diagnosing and screening for 

melanoma. Previous research focused on manually 

created characteristics input into traditional classifiers 

like SVMs, such as color, texture, form, and topological 

descriptors [11]. Because CNNs automatically create 

hierarchical features, they are among the most widely 

used deep learning models. A CNN-SVM pipeline with 

89.3% sensitivity for classifying melanoma was shown 

by Codella et al. (2015). Several CNNs together may 

overcome a significant variance. In order to use texture 

and color data across dermoscopic channels and achieve 

a 95% AUC, Menegola et al. (2016) presented an 

ensemble of 18 CNNs [12]. In order to identify skin 

lesions, Esteva et al. (2017) offered a Convolutional 

Neural Network (CNN) model that was trained on more 

than 100,000 photos. They attained an accuracy of 

72.1% that was on par with dermatologists. Utilizing 

transfer learning from big datasets of natural images 

was a crucial component. But actual performance was 

inadequate. [13]. A novel technique to image 

classification was presented by Matsunaga et al. (2017), 

which used features obtained from deep CNN activation 

outputs instead of traditional image pixels or transform 

coefficients. Melanoma detection using an SVM on 

these activation vectors was 85.5% accurate [14]. In 

order to highlight discriminative areas inside lesions, 

Wang et al. (2019) built a recurrent CNN model that 

included spatial and channel attention branches. 

Adoption Requires Explainable DL [15]. A clear deep 

learning method for the categorization of skin cancer 

lesions was given by Rehman et al. in 2022. Additional 

convolution layers are added to the pre-trained 

MobileNetV2 and DenseNet201 deep learning models 

in order to properly identify skin cancer. Results 

indicate that the given Modified DenseNet201 model 
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achieves 95.50% accuracy and state-of-the-art 

performance when compared with other approaches 

reported in the literature [16]. A multimodal fusion 

method-based technique for classifying skin cancer was 

proposed by Chen et al. in 2023. In this case, MDFNet 

successfully creates a mapping between features of 

heterogeneous data, successfully combines clinical skin 

pictures with patient clinical data, and successfully 

addresses the issues of feature scarcity and inadequate 

feature richness that arise from using just single-mode 

data. According to the experimental findings, the 

suggested smart skin cancer detection model has an 

accuracy of 80.42%, which is around 9% better than the 

model's performance when using simply medical 

images [17]. 

Despite the promising results of machine learning-

based image enhancement techniques, several 

disadvantages are also present. Developing algorithms 

that can generalize to diverse imaging conditions and 

lesion types remains a challenge. Developing more 

transparent and interpretable models could improve 

trust and adoption in clinical settings. While individual 

image enhancement techniques have been extensively 

studied, their impact on the overall performance for skin 

cancer detection is not always clear. More research is 

needed to understand the interplay between image 

enhancement and subsequent classification tasks. In the 

proposed an efficient methodology is proposed for 

enhancement of skin cancer images using MedNode 

dataset. 

3. Proposed Methodology 

 

In the proposed methodology, Melanoma skin cancer 

images from MedNode dataset is taken, and 

experimentation work is carried out using Matlab 2021a 

software. The MedNode dataset is one of the large 

publicly available dataset of skin cancer images 

collected by the MedNode research group. The images 

were acquired from different populations across 

multiple countries, providing diversity in skin tones, 

lesion types, and imaging conditions. The dataset 

includes expert annotations for various diagnostic 

categories such as melanoma, nevus, basal cell 

carcinoma, and seborrheic keratosis. Each case is 

accompanied by metadata, including age, sex, 

anatomical site, and other clinical details. The figure1 

describes the steps involved in the enhancement of skin 

cancer images. The various steps involved are explained 

as below. 

3.1 RGB image splitting 

The first step involves taking a color skin cancer 

image and resizing it to 512 x 512 pixels. It is split into 

red, green, and blue components. When compared to 

operations on combined images, the outcomes from 

operations on each component will be much superior. 

3.2 Median filtering 

The 3×3 size median filter is used to eliminate the noise 

that exists in each component. Unwanted features in 

each component will have an impact on how well 

images are enhanced. The first thing to do is to get rid 

of the noise. 

3.3 RGB color model LAB color model conversion 

The updated RGB version of the skin cancer image is 

created by merging the red, green, and blue components 

that were acquired following median filtering. Then, a 

LAB color space model is created from the revised RGB 

image. The model of color space in LAB have goal to 

simulate human perception and vision. About equal 

perceived color variances by the human eye correspond 

to equivalent distances in the LAB color space. 

3.1.4 CLAHE on ‘L’ component of LAB color model 

The LAB color model's "L" component stands for the 

lightness component. The L component may be used to 

represent grayscale images or to transform color images 

to grayscale while maintaining the perceptual 

brightness information since it indicates lightness. On 

the "L" portion of the LAB color model, the CLAHE is 

applied. It can successfully raise the luminance 
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channel's local contrast when applied to the L 

component of the LAB color model without causing any 

undesirable color distortions or artifacts. This ensures 

that the skin cancer image's original color features are 

maintained while the luminance channel's contrast is 

enhanced. 

 

 

Fig. 1. Proposed methodology for skin cancer images 
enhancement 

 
3.1.5 LAB color model RGB color model conversion 

To create the revised LAB color model of the skin 

cancer image, the updated "L" and "AB" components 

are combined. RGB color model is created by 

converting LAB color model. The updated RGB color 

model for the skin cancer image is more light-colored 

than the original. 

3.1.6 Intensity Adjustment 

Next, the revised RGB image is applied while adjusting 

its intensity. Adjusting the intensity of the RGB color 

model is a simple and obvious operation. It entails 

scaling the values of each of the three color components 

by a fixed amount that adjusts the image's overall 

brightness. 

3.1.7 Log Ratio Difference on Green channel  

The modified RGB image's green channel is subjected 

to the log ratio difference technique. Subtle changes in 

the green channel that can be hard to see in the original 

RGB image might be amplified by the log ratio 

difference. This may be helpful in identifying and 

examining small-scale patterns or traits associated with 

the properties of the image. 

3.1.8 Enhanced skin cancer image 

The final RGB image is generated by combining the 

green channel image that was acquired after the log ratio 

difference was implemented. The final image provide 

enough features to enable the kind of skin cancer to be 

detected. 

4. Results and Discussions 

The MedNode dataset is utilized in the suggested 

approach for skin cancer image enhancement. The goal 

of the MedNode dataset is to support the creation and 

assessment of computer-aided diagnostic systems for 

skin lesions by compiling a selection of high-quality 

photos of skin cancer. A dermatoscope is a device that 

magnifies and lights the skin surface; several high-

quality dermoscopic images, or specialized images, are 

included in this collection. The MedNode collection 

comprises photos that have been painstakingly 

annotated and classified based on various skin lesions, 

including benign nevi (moles), melanoma, and basal 

cell carcinoma. Since skilled dermatologists usually 
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give these annotations, precise labeling and ground 

truth data are guaranteed for machine learning model 

testing and training. After the application of proposed 

methodology, some of the resultant enhanced images 

obtained are represented in figure 2. For Comparative 

analysis, the commonly used methods applied by 

researchers [9] were also shown. 
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Fig. 2 (a) Original skin cancer image (b) Histogram equalization 

output image (c) CLAHE output image (d) CLAHE with 
Gaussian filter (e) CLAHE with Median filter (f) CLAHE with 
Weiner filter (g) enhanced image using proposed methodology 

 
Evaluation parameters are used in the research work to 

assess the effectiveness of the proposed methodology 

for skin cancer image enhancement and analysis. The 

parameters that are assessed include Entropy, Peak 

Signal to Noise Ratio (PSNR), Feature Similarity Index 

Matrix (FSIM), Spectral Similarity Index Matrix 

(SRSIM), Mean Absolute Error (MAE), and Universal 

Quality Index (UQI). 

The various performance parameters have its 

independent significance in representing the 

enhancement technique proposed.  

4.1 Entropy 

The measure of unpredictability or uncertainty in a data 

source is called entropy. Entropy may be used to 

measure the amount of information or randomness in 

skin cancer images. It is a helpful tool for examining the 

patterns and texture of the skin image. Higher entropy 

levels are often indicative of more unpredictability or 

complexity in the texture of the image, which may be 

related to certain traits of skin cancer [18]. 

4.2 Peak Signal to Noise Ratio (PSNR) 

Peak signal-to-noise ratio, or PSNR, is a metric used to 

assess the quality of the image by comparing its greatest 

signal value to any distortion or noise. PSNR is helpful 

in evaluating the quality of skin cancer images, which 

is crucial for precise analysis and diagnosis. Usually, 

PSNR is determined by contrasting an improved version 

of the same image with the original. The higher the 

PSNR value, the better the quality of the enhanced 

image compared to the original [9]. 

4.3 Feature Similarity Index Matrix (FSIM) 

A metric called the Feature Similarity Index Matrix 

(FSIM) is used to compare two images according to 

their low-level characteristics, such texturing, 

brightness, and gradients. FSIM may be helpful in 

evaluating the quality of improved images related to 

skin cancer. Greater values suggest a higher degree of 

low-level feature similarity between the images. The 

value of FSIM ranges from 0 to 1 [19]. 

4.4 Spectral Similarity Index Matrix (SRSIM) 

A popular metric for determining how similar two 

images are to one another perceptually is the Spectral 

Similarity Index Matrix (SRSIM). It is more suited for 

assessing picture quality since it considers both 

luminance distortions and structural information. By 

contrasting the improved images with the original 

images, SRSIM may be used to assess how well 

enhancement methods function in the context of skin 
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cancer imaging. Higher values imply more structural 

similarity between the examined images. The SRSIM 

value ranges from -1 to 1 [20]. 

4.5 Mean Absolute Error (MAE)  

When evaluating enhancement strategies in the context 

of skin cancer imaging, the Mean Absolute Error 

(MAE) is a useful measure. The average magnitude of 

the absolute disparities between the image's ground 

truth and prediction is measured. To provide an 

evaluation of the algorithm's performance, MAE is 

often combined with additional assessment criteria. In 

general, an enhanced skin cancer image that has a larger 

mean absolute error (MAE) value than the original 

image means that the enhancement technique included 

artifacts or distortions that differ from the original 

image [21]. 

4.6 Universal Quality Index (UQI) 

The Universal Quality Index (UQI) is a metric used to 

assess the quality of images related to skin cancer by 

taking into account a number of variables, including 

lighting, contrast, sharpness, and the existence of noise 

or abnormalities. A high UQI score in the context of 

skin cancer imaging means that the picture has the best 

features possible for accurately assessing lesions, such 

as well-defined borders, suitable contrast between the 

lesion and surrounding skin, and few distortions or 

blockages. On the other hand, a low UQI score indicates 

that the image quality could be weakened, which might 

make accurate diagnosis or analysis more difficult. The 

UQI is an important tool for automated quality control 

and picture selection procedures as it can be calculated 

using algorithms that take into account expert 

annotations and domain-specific knowledge [22]. 

It has been observed that all parameters performed well 

as compared to other enhancement techniques. The 

graphical representation of the enhancement results for 

various methods are performed in figure 3. It has been 

observed from the graphs that Entropy, PSNR, FSIM, 

SRSIM and UQI have maximum values for proposed 

methodology and the error MAE is found to have 

minimum value for proposed methodology. All of these 

indicates the proposed method is providing efficient 

enhancement as compared to other enhancement 

methods. 

 

Table 1 Comparison of different enhancement methods with 
respect to the proposed methodology 

 

 HE CLAHE CLAHE 
+ 
Gausian 

CLAHE 
+ 
Median 

CLAHE 
+ 
Weiner 

Propos
ed 

En
tro

py
 Mela

noma 
7.9716 7.7972 7.8014 7.8001 7.8040 7.9968 

Naev
us 

7.9737 7.7622 7.7689 7.7679 7.7730 7.9818 

PS
N

R
 Mela

noma 
12.941 14.502 14.563 14.614 19.601 21.108 

Naev
us 

12.122 14.095 14.128 14.173 17.162 20.432 

FS
IM

 Mela
noma 

0.6869 0.5984 0.6033 0.6134 0.6154 0.8278 

Naev
us 

0.6339 0.5304 0.5345 0.5469 0.5460 0.8122 

SR
SI

M
 Mela

noma 
0.7735 0.7486 0.7537 0.7658 0.7638 0.9355 

Naev
us 

0.7312 0.7152 0.7195 0.7313 0.7295 0.9195 
M

A
E 

Mela
noma 

16.963 8.6917 8.2360 8.0285 7.9539 4.6756 

Naev
us 

24.744 13.628 13.166 12.961 12.737 9.7994 

U
Q

I 

Mela
noma 

0.8353 0.8065 0.9039 0.8042 0.9015 0.9384 

Naev
us 

0.8106 0.8223 0.9182 0.8042 0.9154 0.9247 
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(h) 

 
Fig. 3 Graphs for Entropy, PSNR, FSIM and SRSIM 

It has been observed from the figure 3, that graphs for 

Entropy, PSNR, FSIM and SRSIM have maximum 

values for proposed methodology and the error MAE is 

found to have minimum value for proposed 

methodology. All of these indicates the proposed 

method is providing efficient enhancement as compared 

to other enhancement methods. 

5. Conclusion 

In this paper, we have presented an image 

enhancement framework tailored specifically for skin 

cancer. The proposed approach addresses the 

limitations of existing methods by combining robust 

preprocessing techniques, CLAHE, median filter and 

log ratio difference. 

The key contributions of this work include a method 

that enhances the visibility of diagnostic features while 

preserving natural skin tones, an edge-aware filtering 

technique that reduces noise Extensive experiments on 

MedNode datasets demonstrated the effectiveness of 

our method in improving objective image quality 

metrics and subjective visual assessments compared to 

state-of-the-art techniques. Moreover, the enhanced 

images led to significant improvements in the 

performance parameters for melanoma and naevus 

images. 
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